The best choice for predicting Intel Corporation's peak stock price: Regression Tree or Multiple Linear Regression?
Main Article Content
Abstract
The objective of the study was to compare the performance of the Regression Tree versus the Multiple Linear Regression Model in relation to the opening price and daily sales volume of Intel Corporation shares. A descriptive correlational non-experimental correlational research with cross-sectional design was conducted using a convenience sample. The sample consisted of 410 records collected from May 2018 to October 2019, obtained through documentary review. The results obtained showed that the Regression Tree established that the most significant variable to explain the maximum stock price was the opening price, discarding the volume variable. The Mean Squared Error obtained was $1.4480. On the other hand, the multiple linear regression model, using the outlier elimination technique, presented a Residual Standard Error of 0.2257 dollars. In conclusion, it was determined that the most adequate model to predict the maximum price of Intel Corporation shares is the Multiple Linear Regression Model with the elimination of outlier points.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When an author creates an article and publishes it in a journal, the copyright passes to the journal as part of the publishing agreement. Therefore, the journal becomes the owner of the rights to reproduce, distribute and sell the article. The author retains some rights, such as the right to be recognized as the creator of the article and the right to use the article for his or her own scholarly or research purposes, unless otherwise agreed in the publication agreement.
How to Cite
References
M. Lizares, Comparación de los modelos de clasificación: regresión logística y árboles de clasificación para evaluar el rendimiento académico., 2017.
A. García De Mendoza Ortega, "Intel," Universidad Jesuista de Guadalajara, Guadalajara, 2022.
R. Giménez Fernández and . P. Zamorano, "Modelos predictivos de índices bursátiles relevantes para la economía chilena," Universidad de Chile, Santiago, 2014.
M. L. Alvarez, "Predicción de afinidad de uni´on de ligandos en protéinas," Universidad de Buenos Aires, Buenos Aires, 2016.
D. I. Candia Oviedo, "Predicción del rendimiento académico de los estudiantes de la UNSAAC a partir de sus datos de ingreso utilizando algoritmos de aprendizaje automático," Universidad Nacional San Antonio Abad del Cusco, Cusci, 2019.
J. Bacallao Gallestey and J. M. Parap, "Árboles de regresión y otras opciones metodológicas aplicadas a la predicción del rendimiento académico," Educación Médica Superior, 2004.
S. Rosales Heredia, C. Bruno and . M. Balzarini, "Identificación de relaciones entre rendimientos y variables ambientales vía árboles de clasificación y regresión (CART)," Interciencia, vol. 35, no. 12, pp. 876-882, 2010.
S. C. S. Pineda, Comparación de árboles de regresión y clasificación regresion logística, 2009.
J. Felipe Díaz and J. Carlos Correa, "Comparación entre árboles de regresión CART," Comunicaciones en Estadística, vol. 6, no. 2, pp. 175-195, 2013.https://doi.org/10.15332/s2027-3355.2013.0002.05
IBM, "IBM Cognos Analytics," 2022. [Online]. Available: https://www.ibm.com/docs/es/cognos-analytics/11.1.0?topic=tests-multiple-linear-regression. [Accessed 12 10 2022].
J. Amat Rodrigo, "cienciadedatos.net," https://cienciadedatos.net/documentos/25_regresion_lineal_multiple, 2016. [Online]. Available: https://cienciadedatos.net/documentos/25_regresion_lineal_multiple. [Accessed 2 10 2022].
D. R. Tobergte and S. Curtis, "Introducción a la econometría: Un enfoque moderno," Journal of Chemical Information and Modeling, vol. 53, no. 9, 2013.
M. Torres, K. Paz and F. Salazar, "Métodos de recolección de datos para una investigación," no. 2, pp. 2-21, 2019.
R. Hernadez Sampieri, C. Fernández Collado and P. Batista Lucio, Metodología de la Investigación, Cuarta ed., Mexico: MACGRAW-HILL, 2010.
J. I. Espinosa Muñoz, "na aproximación a la predicción del valor de acciones en la bolsa de valores aplicando técnicas de Data Mining," Universidad Politécnica de Madrid, Madrid, 2015.
J. . F. D. Sepúlveda Díaz and J. C. Correa Morales, "Comparación entre árboles de regresión CART y regresión lineal," Comunicaciones en Estadística 6.2, pp. 175-195, 2013.https://doi.org/10.15332/s2027-3355.2013.0002.05