Machine learning techniques for detecting intrusions in networks: A systematic review of the literature
Main Article Content
Abstract
Cybersecurity is one of the main challenges of the modern world due to the rapid technological advancement, which, although it has improved the quality of life, has also exposed networks to new threats. The objective of this study is to evaluate the impact of intrusion detection systems (IDS) on data protection and to analyze how these techniques have adapted to emerging threats, improving the detection of malicious activities. To achieve this, a systematic review of articles published between 2018 and 2024 in databases such as IEEE, ACM, ScienceDirect and Scopus was conducted, following Barbara Kitchenham's methodology, using the Parsifal tool to generate searches and formulate research questions. Initial results indicate a growing interest in the application of Machine Learning techniques for intrusion detection over the last six years, with a peak of publications in 2023, especially in the IEEE database, demonstrating a significant evolution in the effectiveness of these techniques to address cyber threats.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Los nombres y las direcciones de correo electrónico introducidos en esta revista se usarán exclusivamente para los fines establecidos en ella y no se proporcionarán a terceros o para su uso con otros fines.
How to Cite
References
cybersecurityventures, “Cybercrime To Cost The World $10.5 Trillion Annually By 2025.” [Online]. Available: https://cybersecurityventures.com/cybercrime-damage-costs-10-trillion-by-2025/
M. Aljanabi, M. Arfian, H. Abdulkaree, and J. Sulaiman, “Intrusion Detection : A Review,” no. 1–4, 2021, doi: 10.58496/MJCS/2021/001.
G. Valdezate and cardeñoso Valentín, “Sistemas de Deteccion de Intrusos ´ Basados en Tecnicas de Machine Learning,” pp. 1–52, [Online]. Available: https://uvadoc.uva.es/bitstream/handle/10324/44228/TFG-G4680.pdf?sequence=1
B. J. Daniel, A. Silvia, and V. Laura, “Detección de Intrusiones mediante el uso de Redes Neuronales,” p. 6, doi: 10.1109/TLA.2007.4378531.
J. Luis and R. Pérez, “Técnicas de aprendizaje automático para la detección de intrusos en redes de computadoras,” vol. 8, no. 4, pp. 52–73, 2014, Accessed: Oct. 08, 2024. [Online]. Available: http://scielo.sld.cu/pdf/rcci/v8n4/rcci03414.pdf
A. Pérez, S. Rodríguez, and J. Maritenez, “Detección de Intrusiones en Redes de Computadores Usando Redes Neuronale,” Revista de Tecnología y Seguridad Informática, vol. 12, no. 44–58, 2021.
H. Hacilar, Z. Aydin, and V. Çağri Güngör, “Network intrusion detection based on machine learning strategies: performance comparisons on imbalanced wired, wireless, and software-defined networking (SDN) network traffics,” vol. 32, pp. 623–640, 2024, doi: 10.55730/1300-0632.4091.
I. H. Hassan, A. Mohammed, and M. A. Masama, “Metaheuristic algorithms in network intrusion detection,” Comprehensive Metaheuristics: Algorithms and Applications, pp. 95–129, Jan. 2023, doi: 10.1016/B978-0-323-91781-0.00006-5.
Q. Liu and T. Zhang, “Deep learning technology of computer network security detection based on artificial intelligence,” Computers and Electrical Engineering, vol. 110, p. 108813, Sep. 2023, doi: 10.1016/J.COMPELECENG.2023.108813.
C. Kalimuthan and J. Arokia Renjit, “Review on intrusion detection using feature selection with machine learning techniques,” Mater Today Proc, vol. 33, pp. 3794–3802, Jan. 2020, doi: 10.1016/J.MATPR.2020.06.218.
H. Jmila and M. I. Khedher, “Adversarial machine learning for network intrusion detection: A comparative study,” Computer Networks, vol. 214, p. 109073, Sep. 2022, doi: 10.1016/J.COMNET.2022.109073.
U. S. Musa, M. Chhabra, A. Ali, and M. Kaur, “Intrusion Detection System using Machine Learning Techniques: A Review,” in Proceedings - International Conference on Smart Electronics and Communication, ICOSEC 2020, Institute of Electrical and Electronics Engineers Inc., Sep. 2020, pp. 149–155. doi: 10.1109/ICOSEC49089.2020.9215333.
V. Gancheva, “Application of Machine Learning Techniques for Software Anomaly Detection,” pp. 57–62, doi: 10.1109/ICAMCS59110.2023.00016.
A. Sareh, R. Shreif, and E. Heba, “Efficient Feature Selection for Intrusion Detection Systems,” pp. 1029–1034, 2019, doi: 10.1109/UEMCON47517.2019.8992960.
J. Lansky, S. Ali, and M. Mohammadi, “Deep Learning-Based Intrusion Detection Systems: A Systematic Review,” IEEE Access, 2021, doi: 10.1109/ACCESS.2021.3097247.
H. A. Abdullah Abdulwali, M. H. Saleh Al-Humaidi, H. Z. Abdullah Al-Asri, A. F. Mansour Al-Saidi, and A. A. Al-Himiary, “Intrusions Detection System Using Machine Learning Algorithms,” 2023 3rd International Conference on Emerging Smart Technologies and Applications, eSmarTA 2023, pp. 1–8, 2023, doi: 10.1109/ESMARTA59349.2023.10293386.
U. S. Musa, S. Chakraborty, M. M. Abdullahi, and T. Maini, “A review on intrusion detection system using machine learning techniques,” Proceedings - IEEE 2021 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2021, pp. 541–549, Feb. 2021, doi: 10.1109/ICCCIS51004.2021.9397121.
S. V. Amanoul and A. M. Abdulazeez, “Intrusion Detection System Based on Machine Learning Algorithms: A Review,” 2022 IEEE 18th International Colloquium on Signal Processing and Applications, CSPA 2022 - Proceeding, pp. 79–84, 2022, doi: 10.1109/CSPA55076.2022.9782043.
M. Halim, B. A. Pratomo, and B. Jati Santoso, “Comparative Analysis of Novelty Detection Algorithms in Network Intrusion Detection Systems,” 2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation, ICAMIMIA 2023 - Proceedings, pp. 306–310, 2023, doi: 10.1109/ICAMIMIA60881.2023.10427625.
A. A. Yilmaz, “Intrusion Detection in Computer Networks using Optimized Machine Learning Algorithms,” 3rd International Informatics and Software Engineering Conference, IISEC 2022, pp. 1–5, 2022, doi: 10.1109/IISEC56263.2022.9998258.
M. Komisarek, M. Pawlicki, M. Kowalski, A. Marzecki, R. Kozik, and M. Choraś, “Network Intrusion Detection in the Wild - The Orange use case in the SIMARGL project,” ACM International Conference Proceeding Series, Aug. 2021, doi: 10.1145/3465481.3470091.
Z. Rachidi, K. Chougdali, A. Kobbane, and J. Ben-Othman, “Network intrusion detection using Machine Learning approach,” ACM International Conference Proceeding Series, pp. 13–17, Jul. 2022, doi: 10.1145/3551690.3551693.
M. J. Rani and D. Singh, “Machine Learning Algorithm for Intrusion Detection: Performance Evaluation and Comparative Analysis,” 7th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC 2023 - Proceedings, pp. 779–784, 2023, doi: 10.1109/I-SMAC58438.2023.10290491.
B. Beridze and M. Donadze, “Network Anomaly Detection Utilizing Machine Learning Methods,” 2023 IEEE East-West Design and Test Symposium, EWDTS 2023 - Proceedings, 2023, doi: 10.1109/EWDTS59469.2023.10297059.
Z. H. Salim and S. O. Hasoon, “Intrusion Detection Using Artificial Intelligence Techniques: Review,” International Conference on Artificial Intelligence, Computer, Data Sciences, and Applications, ACDSA 2024, 2024, doi: 10.1109/ACDSA59508.2024.10467524.
A. Verma and V. Ranga, “Statistical analysis of CIDDS-001 dataset for Network Intrusion Detection Systems using Distance-based Machine Learning,” Procedia Comput Sci, vol. 125, pp. 709–716, Jan. 2018, doi: 10.1016/J.PROCS.2017.12.091.
I. A. Najm and A. H. Saeed, “Enhanced Network Traffic Classification with Machine Learning Algorithms,” pp. 322–327, 2024, doi: 10.1145/3660853.3660935.