Paralelización del algoritmo a priori para la búsqueda de elementos frecuentes

Contenido principal del artículo

Yonatan Mamani Coaquira
Edith K. Chumpisuca Carrion

Resumen

Existe una amplia variedad de técnicas que mejoran el rendimiento de las aplicaciones al solucionar uno o más de los problemas más importantes de los procesadores actuales. En este trabajo, se muestran el tiempo de ejecución, la aceleración y la eficiencia del algoritmo lineal Apriori, así como su paralelismo con el uso de OpenMP. Al identificar los elementos frecuentes de las bases de datos transaccionales, se observa que, al procesar 5 mil registros, el tiempo del algoritmo con OpenMP mejora en 42,078 segundos en comparación con el algoritmo secuencial, en cuya ejecución se utilizaron 8 núcleos de procesador.

Detalles del artículo

Cómo citar
Paralelización del algoritmo a priori para la búsqueda de elementos frecuentes. (2021). Micaela Revista De Investigación - UNAMBA, 1(1), Pág. 26-31. https://doi.org/10.57166/
Sección
Artículos

Cómo citar

Paralelización del algoritmo a priori para la búsqueda de elementos frecuentes. (2021). Micaela Revista De Investigación - UNAMBA, 1(1), Pág. 26-31. https://doi.org/10.57166/

Referencias

R.Agrawal and R. Srikant, "Mining sequential patterns," Proc. Elev. Int. Conf. Data Eng., pp. 3-14, 1995.

C. Borgelt, "Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination," in Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, 2005, pp. 66-70.

M.J. Zaki, "Scalable algorithms for association mining," IEEE Trans. Knowl. Data Eng., vol. 12, no.3, pp. 372–390, May 2000.

J. Han, J. Pei, Y. Yin, and R. Mao, "Mining frequent patterns without candidate generation: A frequent-pattern tree approach," Data Min. Knowl. Discov., vol. 8, no. 1, pp. 53-87, 2004.

Z.-H. Deng and S.-L. Lv, "Fast mining frequent itemsets using Nodesets," Expert Syst. Appl., vol. 41, no. 10, pp. 4505-4512, 2014.

N. Li, L. Zeng, Q. He, and Z. Shi, "Parallel Implementation of Apriori Algorithm Based on MapReduce," in 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2012, pp. 236-241.

P. Pacheco, An Introduction to Parallel Programming. 2011.

R.Agrawal and J. C. Shafer, "Parallel mining of association rules," IEEE Trans. Knowl. Data Eng., vol. 8, no. 6, pp. 962-969, Dec. 1996.

Y. Wei, R. Yang, and P. Liu, "An improved Apriori algorithm for association rules of mining," in 2009 IEEE International Symposium on IT in Medicine Education, 2009, vol. 1, pp. 942-946.

X.-W. Liu and P.-L. He, "The research of improved association rules mining Apriori algorithm," in Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), 2004, vol. 3, pp. 1577–1579 vol.3.

Y. Ye and C.-C. Chiang, "A Parallel Apriori Algorithm for Frequent Itemsets Mining," in Fourth International Conference on Software Engineering Research, Management and Applications (SERA'06), 2006, pp. 87-94.

J. Pei et al., "Mining sequential patterns by pattern-growth: the PrefixSpan approach," IEEE Trans. Knowl. Data Eng., vol. 16, no. 11, pp. 1424–1440, Nov. 2004.

H. Qiu, R. Gu, C. Yuan, and Y. Huang, "YAFIM: A Parallel Frequent Itemset Mining Algorithm with Spark," in 2014 IEEE International Parallel Distributed Processing Symposium Workshops, 2014, pp. 1664-1671.

Y. Wang, T. Xu, S. Xue, and Y. Shen, "D2P-Apriori: A deep parallel frequent itemset mining algorithm with dynamic queue," 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), 2018, pp. 649-654. in 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), 2018, pp. 649-654.

M. Nadimi-Shahraki and M. Mansouri, "Hp-Apriori: Horizontal parallel-apriori algorithm for frequent itemset mining from big data," in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(, 2017, pp. 286-290.

S. Nesmachnow, "COMPUTACIÓN DE ALTA PERFORMANCE," 2010. [Online]. Available: https://www.fing.edu.uy/inco/cursos/hpc/material/clases/Tema4-2010.pdf. [Accessed: 30-Jul-2019].