Nutritional composition, fatty acid profile, and presence of Salmonella spp. in housefly pupae meal (Musca domestica)

Main Article Content

Yemerson Alcides Salas-Puga
Zenaida Huamani-Huamani
Julio Iván Cruz-Colque
Isai Ochoa-Pumaylle

Abstract

The larval forms of insects are considered potential alternative sources of protein for human and domestic animal feeding, so it is necessary to know their nutritional information to include them in animal diets. The objective of this research was to evaluate the nutritional composition, fatty acid profile, and presence of Salmonella spp. in house fly pupae meal. Three samples of pupae meal were collected and sent to the Nutritional Evaluation Laboratory of UNALM for nutritional assessment.  Salmonella spp. was evaluated at the UNAMBA Microbiology Laboratory Veterinary Medicine Faculty. The house fly pupae flour contains 58.44±0.14% crude protein, 16.33% fat, 11.415% crude fiber, 5.24% ash, and 1.03% nitrogen-free extract. The flour has a composition of 14.63% linoleic acid (Omega 6), 32.57% cis-9 oleic acid, 0.8% linolenic acid (Omega 3), and other fatty acids. The nutritional composition, fatty acid profile, and absence of Salmonella spp. in the pupae meal make it a suitable alternative for including this ingredient in domestic animal diets.

Article Details

How to Cite
Nutritional composition, fatty acid profile, and presence of Salmonella spp. in housefly pupae meal (Musca domestica). (2024). Micaela Revista De Investigación - UNAMBA, 5(2), 72-79. https://doi.org/10.57166/micaela.v5.n2.2024.160
Section
Artículos
Author Biographies

Yemerson Alcides Salas-Puga, Micaela Bastidas National University of Apurimac, Peru

Graduated from the Micaela Bastidas National University of Apurimac from the professional school of Veterinary Medicine and Zootechnics of the UNAMBA. This research work is part of the requirement to obtain the title of Veterinary Doctor and Zootechnician.

Zenaida Huamani-Huamani , Micaela Bastidas National University of Apurimac, Peru

Laboratory technician from the Faculty of Veterinary Medicine and Zootechnics, with training in microbiological analysis of animal feed. Executor of the research project "Characteristics and nutritional evaluation of a food for growing guinea pigs based on meal of larvae and pupae of housefly (Musca domestica L)"

Julio Iván Cruz-Colque, Micaela Bastidas National University of Apurimac, Peru

Docente del Departamento Académico de Medicina Veterinaria y Zootecnia, miembro del grupo de investigación Nutrición y Microbiología Veterinaria y ejecutor del proyecto de investigación “Características y evaluación nutricional de un alimento para cuyes en crecimiento en base harina de larvas y pupas de mosca doméstica (Musca domestica L)”

Isai Ochoa-Pumaylle, Micaela Bastidas National University of Apurimac, Peru

Professor of the Academic Department of Veterinary Medicine and Zootechnics, Coordinator of the Veterinary Nutrition and Microbiology research group and the research project "Characteristics and nutritional evaluation of a food for growing guinea pigs based on meal of house fly larvae and pupae (Musca domestica L)".

How to Cite

Nutritional composition, fatty acid profile, and presence of Salmonella spp. in housefly pupae meal (Musca domestica). (2024). Micaela Revista De Investigación - UNAMBA, 5(2), 72-79. https://doi.org/10.57166/micaela.v5.n2.2024.160

References

A. Franco et al., “Lipids from hermetia illucens, an innovative and sustainable source,” Sep. 01, 2021, MDPI. https://doi.org/10.3390/su131810198

G. P. Arango Gutiérrez, “Los insectos: una materia prima alimenticia promisoria contra la hambruna,” Rev Lasallista Investig, vol. 2, no. 1, pp. 33–37, 2005.

M. J. Sánchez-Muros, F. G. Barroso, and F. Manzano-Agugliaro, “Insect meal as renewable source of food for animal feeding: A review,” Feb. 15, 2014. https://doi.org/10.1016/j.jclepro.2013.11.068.

C. E. Parlamento Europeo, “Comisión Europea. Reglamento (UE) 2017/893 de la comision- de 24 de mayo de 2017,” vol. 2017, no. 3, p. L 138/ Pàg (92-116), 2017.

A. Jansson and Å. Berggren, “Insects as Food - Something for the Future?,” Uppsala, Swedish University of Agricultural Sciences (SLU). 2015.

M. Novak, “Calidad de la carne de cuyes (Cavia porcellus) alimentados con harina de larvas de mosca soldado (Hermetia illucens) como fuente proteica,” Tesis de maestria, Universidad Nacional Agraria La Molina, Lima, 2023.

J. Corbalá, J.; Vargas, J.; López, N.; Lastra, C.; Cu-Contreras, J.; Castollo, “Uso de proteína derivada de larvas de mosca doméstica (Musca domestica) para el cultivo de tilapia (Oreochromis niloticus),” Revista Iberoamericana de Ciencias, vol. 6. No. 1, p. 10, 2019.

A. Parra, “Efecto de la inclusión de harina de larva de mosca soldado negra (Hermetia illucens) en la nu-trición de codorniz japónica (Coturnix oturnix japonica) en la etapa de cría en la finca Tonchalá, Corre-gimiento Carmen de Tonchalá-Norte de Santander, Colombia,” Universidad de Pamplona, Villa del Rosa-rio, 2020.

J. Sanchez, H.; Capinera, “House fly, Musca domestica Linnaeus 1,” 2020.

E. Pieterse and Q. Pretorius, “Nutritional evaluati on of dried larvae and pupae meal of the housefly (Musca domestica) using chemical-and broiler-based biological assays,” Anim Prod Sci, vol. 54, no. 3, pp. 347–355, 2014, https://doi.org/10.1071/AN12370.

O. Aniebo, A.; Owen, “Effects of age and method of drying on the proximate composition of housefly larvae (Musca domestica Linnaeus) Meal (HFLM),” Pakistan Journal of Nutrition, vol. 9, no. 5, pp. 485–487, 2010, https://doi.org/10.3923/pjn.2010.485.487.

SENAMHI, “Lineamientos generales que orientan la aplicación de la información climática.” Accessed: Jan. 20, 2022. [Online]. Available: https://www.senamhi.gob.pe

H. P. S. Makkar, G. Tran, V. Heuzé, and P. Ankers, “State-of-the-art on use of insects as animal feed,” Nov. 01, 2014, Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2014.07.008.

E. Ayquipa, “Producción de harina de larvas de mosca doméstica (Musca doméstica linnaeus) según el tipo de estiércol,” Tesis para optar el título profesional, Universidad Nacional Micaela Bastidas de Apu-rímac, Abancay, 2022.

Association of Official Analytical Methods, “Official Methods of Analysis,” 2005.

Y. Li and B. Watkins, “Analysis of Fatty Acids in Food Lipids,” Current Protocols in Food Analytical Chemistry, 2001. https://doi.org/10.1002/0471142913.fad0102s00.

[ICMSF] International Commission on Microbiological Specifications for Foods, Microorganisms in foods, 1st edition. Springer. 2011.

Ministerio de Salud, “NTS N° 071-MINSA/DIGESA-V-01,” 2008, Lima - Perú. [Online]. Available: https://www.senasa.gob.pe/senasa/descargasarchivos/2015/07/CRITERIOS-MICROBIOLOGICOS-RM-591-2008-MINSA.pdf

S. St-hilaire et al., “Fly Prepupae as a Feedstuff for Rainbow Trout, Oncorhynchus mykiss,” 2007. https://doi.org/10.1111/j.1749-7345.2006.00073.x.

R. Anrique, Composición de alimentos para el ganado bovino, Cuarta edición. Consorcio Lechero, 2014.

M. Coronado Herrera, S. Vega León, R. Gutiérrez Tolentino, B. García Fernández, and G. Díaz González, “Los ácidos grasos Omega-3 y Omega-6: Nutrición, bioquímica y Salud,” Revista de educación bioquími-ca, vol. 25, no. 3, pp. 72–79, 2005.

C. Gómez Alfaro, “Elaboración y caracterización nutricional de harina de larva de mosca doméstica (Musca domestica),” Tesis para optar al título profesional, Universidad de Chile, Santiago de Chile, 2022.

C. Saturnino et al., “Los insectos como complemento nutricional de la dieta: fuente de lípidos potencial-mente bioactivos,” Alimentación, Nutrición y Salud, vol. 23, no. 2, pp. 50–56, 2016.

J. Lu, X.;Shen, J.; Jin, X.; Ma, Y; Huang.Y; Mei, H.; Chu, F.; Zhu, “Bactericidal activity of Musca domesti-ca cecropin (Mdc) on multidrug-resistant clinical isolate of Escherichia coli,” Appl Microbiol Biotechnol, vol. 95, pp. 939–945, 2012. https://doi.org/10.1007/s00253-011-3793-2.

E. Casanovas Cosío, A. Suárez del Villar Labastida, N. Valladares Enriquez, D. Quero Machado, and R. Reyes Reyes, “Producción de larvas de moscas (Musca domestica L.) con diferentes proporciones de ca-chaza y gallinaza,” Revista Metropolitana de Ciencias Aplicadas, vol. 4, no. 1, pp. 33–40, Jan. 2021. https://doi.org/10.62452/rhwg2s44.

M. C. Erickson, M. Islam, C. Sheppard, J. Liao, and M. P. Doyle, “Reduction of Escherichia coli O157:H7 and Salmonella enterica Serovar Enteritidis in Chicken Manure by Larvae of the Black Soldier Fly,” 2004. https://doi.org/10.4315/0362-028X-67.4.685.