Avocado crop thirpc pest recognition model using convolutional neural
Main Article Content
Abstract
Avocado production plays an important role in meeting the world's nutritional food needs. Plant disease is a fairly common phenomenon that hampers gross production and causes huge losses to growers. In this context, early detection of TRIPS disease is essential for healthy production. This research is developed on the ResNet18 model, an approach based on convolutional neural networks (CNN) to detect TRIPS disease, since, it causes a total loss in most avocados in quitasol Abancay, as for, using images of avocado leaves, this model performs especially for the recognition of avocado disease, in the place of quitasol Abancay using a novel deep learning by means of images that conform a set of specific data of the region and is classified in two classes as they are Trips and Healthy of the avocado, in ResNet18 performance is evaluated with an average of accuracy, precision, recall of 99. 24%, 98.94% and 99.29% respectively, in a VGG-16 validation with a measurement, accuracy, recall 96.78%, 96.77% and 95.74% respectively, with a higher variation than the model as VGG-16. ResNet18 can be useful in detecting early symptoms of TRIPS disease, ultimately leading to higher avocado yield.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When an author creates an article and publishes it in a journal, the copyright passes to the journal as part of the publishing agreement. Therefore, the journal becomes the owner of the rights to reproduce, distribute and sell the article. The author retains some rights, such as the right to be recognized as the creator of the article and the right to use the article for his or her own scholarly or research purposes, unless otherwise agreed in the publication agreement.
How to Cite
References
P. A. Lta, “Análisis de 2015 - 2019,” 2019.
Ministerio de Agricultura Pesca y Alimentación de España, “plan de manejo trips en el cultivo de agucate hass,” pp. 227–228.
J. A. López-Buenfil and J. G. Torres-Martínez, “Manual de Identificación de las Principales Plagas del Aguacate en México,” p. 38, 2018.
P. Solís Calderón, PLAN DE MANEJO DE TRIPS EN EL CULTIVO DEL AGUACATE HASS. 2016. [Online]. Available: http://hdl.handle.net/20.500.12324/33815
A. Pe, “Latinoamérica lidera crecimiento mundial de la palta, con México, Perú, Chile y Colombia a la vanguardia,” 31 julio del 2023. [Online]. Available: https://agraria.pe/noticias/produccion-mundial-de-palta-alcanzo-las-8-4-millones-de-tone-32683#:~:text=a la vanguardia-,Producción mundial de palta alcanzó las 8.4 millones de toneladas,entre el 2012 y 2022&text=México el principal productor global,y Perú
N. de Prensa, “Exportación de palta supero las 36 mil toneldas en primer bimestre de 2024.” [Online]. Available: https://www.gob.pe/institucion/agromercado/noticias/930071-midagri-exportacion-de-palta-supero-las-36-mil-toneladas-en-primer-bimestre-de-2024
G. R. Apurímac, “Apurímac exportará Palta a nivel internacional,” 28 noviembre 2022. [Online]. Available: https://www.gob.pe/institucion/regionapurimac/noticias/674810-apurimac-exportara-palta-a-nivel-internacional
H. Afzaal et al., “Detection of a potato disease (Early blight) using artificial intelligence,” Remote Sens., vol. 13, no. 3, pp. 1–17, 2021, doi: 10.3390/rs13030411.
C. C. Bonik, F. Akter, M. H. Rashid, and A. Sattar, “A Convolutional Neural Network Based Potato Leaf Diseases Detection Using Sequential Model,” 2023 Int. Conf. Adv. Technol. ICONAT 2023, no. April, 2023, doi: 10.1109/ICONAT57137.2023.10080063.
A. Ramcharan, P. Mccloskey, K. Baranowski, and N. Mbilinyi, “A Mobile-Based Deep Learning Model for Cassava Disease Diagnosis,” vol. 10, no. March, pp. 1–8, 2019, doi: 10.3389/fpls.2019.00272.
G. Kamdar, Jignesh and Jasani, M. and Jasani, Jash and John, Jeba Praba and John. J, “Artificial intelligence for plant disease detection: past, present, and future,” pp. 223–238, 2021.
F. Coban, “The Role of the Media in International Relations: From the CNN Effect to the Al –Jazeere Effect,” J. Int. Relations Foreign Policy, vol. 4, no. 2, pp. 45–61, 2016, doi: 10.15640/jirfp.v4n2a3.
M. A. B. Bhuiyan, H. M. Abdullah, S. E. Arman, S. Saminur Rahman, and K. Al Mahmud, “BananaSqueezeNet: A very fast, lightweight convolutional neural network for the diagnosis of three prominent banana leaf diseases,” Smart Agric. Technol., vol. 4, no. February, p. 100214, 2023, doi: 10.1016/j.atech.2023.100214.
C. A. S. ROBLES and I. D. P. C. CRUZ, “Modelo de predicción de plagas en el cultivo de palto utilizando metodología de aprendizaje automático supervisado, empresa Virú S.A., 2019-2021,” pp. 1–60, 2021, [Online]. Available: http://www.gonzalezcabeza.com/documentos/CRECIMIENTO_MICROBIANO.pdf
R. A. Rizvee et al., “LeafNet: A proficient convolutional neural network for detecting seven prominent mango leaf diseases,” J. Agric. Food Res., vol. 14, no. July, p. 100787, 2023, doi: 10.1016/j.jafr.2023.100787.
M. S. H. Talukder et al., “JutePestDetect: An intelligent approach for jute pest identification using fine-tuned transfer learning,” Smart Agric. Technol., vol. 5, no. July, p. 100279, 2023, doi: 10.1016/j.atech.2023.100279.
F. D. E. I. Y. Arquitectura, “Shiane Lizceth Farfan Vergara,” 2021.
W. A. Lozada-Portilla, M. J. Suarez-Barón, and E. Avendaño-Fernández, “Application of convolutional neural networks for detection of the late blight Phytophthora infestans in potato Solanum tuberosum,” Rev. U.D.C.A Actual. Divulg. Cient., vol. 24, no. 2, pp. 1–9, 2021, doi: 10.31910/rudca.v24.n2.2021.1917.
A. C. B. y L. F.-F. Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, “Desafío de reconocimiento visual a gran escala de ImageNet.” [Online]. Available: https://www.image-net.org/challenges/LSVRC/index.php
T. Bachlechner, B. P. Majumder, H. Mao, G. Cottrell, and J. McAuley, “ReZero is All You Need: Fast Convergence at Large Depth,” Proc. Mach. Learn. Res., vol. 161, no. 1, pp. 1352–1361, 2021.
K. H. and X. Z. and S. R. and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE Conf. Comput. Vis. Pattern Recognit., pp. 770–778, 2015, [Online]. Available: https://api.semanticscholar.org/CorpusID:206594692
D. P. H. and M. Salathe, “An open access repository of images on plant health to enable the development of mobile disease diagnostics,” 2016, [Online]. Available: https://arxiv.org/abs/1511.08060
E. A. Huerta-mora, V. González-huitrón, H. Rodríguez-rangel, and L. E. Amabilis-sosa, “Detección de enfermedades foliares con arquitecturas de redes neuronales convolucionales,” vol. 5, no. 1, pp. 18–40, 2020.