Determination of heavy metal contamination in the surface sediments of the Antabamba River sub-basin in a medium-term period
Main Article Content
Abstract
The research addresses the serious environmental problem of heavy metal contamination in the surface sediments of the Antabamba River sub-basin, caused by mining, anthropogenic activities or natural processes. The main objective is to determine the influence of heavy metal contamination in the surface sediments of the Antabamba River sub-basin to predict environmental quality over a medium-term period by applying machine learning, analyzing concentrations of metals such as chromium, and considering the standards. current quality standards. With an applicative approach and correlational experimental design, 28 sediment samples were collected and analyzed at 14 stations. The use of machine learning algorithms makes it possible to predict permissible pollution limits with 75% accuracy, providing key data for environmental management and mitigation strategies for months. The results underline the need to implement regulatory control and compliance to reduce short- and medium-term impacts, and highlight the importance of applying new methods to optimize forecasts and future research
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When an author creates an article and publishes it in a journal, the copyright passes to the journal as part of the publishing agreement. Therefore, the journal becomes the owner of the rights to reproduce, distribute and sell the article. The author retains some rights, such as the right to be recognized as the creator of the article and the right to use the article for his or her own scholarly or research purposes, unless otherwise agreed in the publication agreement.
How to Cite
References
M. Zhang, P. He, G. Qiao, J. Huang, X. Yuan, and Q. Li, “Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: Spatial distribution, source apportionment and eco-logical risk,” Chemosphere, vol. 223, pp. 211–222, May 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.02.058
M. Huaranga et al., "Contaminación por metales pesados en la Cuenca del Río Moche, 1980 – 2010, La Libertad – Perú," 2010. doi: https://doi.org/10.17268/sci.agropecu.2012.03.05
L. Chávez and A. Flores, "Contaminación por metales pesados en sedimentos del río Antabamba, Apurímac," Revista Local de Cien-cias Ambientales de Apurímac, vol. 6, no. 1, pp. 25-40, 2022.
P. M. Bach, W. Rauch, P. S. Mikkelsen, D. T. McCarthy, and A. Delet-ic, “A critical review of integrated urban water modelling – Urban drainage and beyond,” Environmental Modelling & Software, vol. 54, pp. 88–107, Apr. 2014, doi:
https://doi.org/10.1016/j.envsoft.2013.12.018
M. E. Mohammad, N. Al-Ansari, and S. Knutsson, “Annual Runoff and Sediment in Duhok Reservoir Watershed Using SWAT and WEPP Models,” Engineering, vol. 08, no. 07, pp. 410–422, 2016, doi: https://doi.org/10.4236/eng.2016.87038
J. Feng and H. Yang, "Predicting heavy metal pollution in sediments using bagging techniques," Environmental Monitoring and As-sessment, vol. 195, no. 3, p. 576, 2023. doi: https://10.1007/s10661-023-10932-2.
M. Abrahan, J. A. Silva, and E. Lobo, "Assessment of heavy metals contamination in surface sediments using multivariate statistical techniques and artificial neural networks," Environmental Monitor-ing and Assessment, vol. 188, no. 3, p. 144, 2016. doi: https://10.1007/s10661-015-5165-8.
H. Ávila, E. Quintero, and N. Angulo, "Determinación de metales pesados en sedimentos superficiales costeros del sistema lago de Maracaibo, Venezuela," Multiciencias, vol. 14, no. 1, pp. 16-21, 2014. https://www.redalyc.org/articulo.oa?id=90430816005
R. Abarca and A. Vargas, "Contaminación por metales pesados en la región de Apurímac: Un análisis de la calidad del suelo," Revista de Ciencias Ambientales, vol. 45, no. 2, pp. 123-135, 2021.
Ministerio del Ambiente, "Informe sobre el estado de los suelos en Perú," Lima. Gobierno del Perú, 2020. https://site.minam.gob.pe
Oefa, "Oficina de Evaluación y Fiscalización Ambiental," 2022. [Online]. Available: https://www.gob.pe/oefa.
L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. Doi: https://doi.org/10.1023/A:1010933404324
Vu Huy, "A Machine Learning Assessment to Predict the Sediment Transport Rate Under Oscillating Sheet Flow Conditions," Universi-ty of New Orleans, 12-2019. https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=1134&context=honors_theses
[SIAR, "Sistema de Información Ambiental Regional," [Online]. Available: http://siar.regionsanmartin.gob.pe/
M. González Mares, “Hernández-Sampieri, R. & Mendoza, C (2018). Metodología de la investigación. Las rutas cuantitativa, cua-litativa y mixta,” Revista Universitaria Digital de Ciencias Sociales (RUDICS), vol. 10, no. 18, pp. 92–95, Jan. 2019, doi: https://10.22201/fesc.20072236e.2019.10.18.6.
M. R. Khan et al., "Ensemble learning methods for predicting heavy metal contamination in river sediments," Environmental Monitor-ing and Assessment, vol. 196, no. 2, p. 99, 2024. doi: https://doi.org/10.22201/fesc.20072236e.2019.10.18.6
Y. Wang et al., "Extreme Learning Machine for predicting sediment contamination by heavy metals," Ecotoxicology and Environmental Safety, vol. 238, p. 113550, 2024. doi: https://10.1016/j.ecoenv.2023.113550.
P. Zhang et al., "Fuzzy logic and machine learning integration for predicting heavy metal levels in sediment," Journal of Cleaner Pro-duction, vol. 405, p. 135450, 2023. doi: https://10.1016/j.jclepro.2023.135450.