Determination of heavy metal contamination in the surface sediments of the Antabamba River sub-basin in a medium-term period

Main Article Content

Darío Sánchez-Castillo
Pablo Zuloaga-Candia
Karina Gamarra-Peralta

Abstract

 The research addresses the serious environmental problem of heavy metal contamination in the surface sediments of the Antabamba River sub-basin, caused by mining, anthropogenic activities or natural processes. The main objective is to determine the influence of heavy metal contamination in the surface sediments of the Antabamba River sub-basin to predict environmental quality over a medium-term period by applying machine learning, analyzing concentrations of metals such as chromium, and considering the standards. current quality standards. With an applicative approach and correlational experimental design, 28 sediment samples were collected and analyzed at 14 stations. The use of machine learning algorithms makes it possible to predict permissible pollution limits with 75% accuracy, providing key data for environmental management and mitigation strategies for months. The results underline the need to implement regulatory control and compliance to reduce short- and medium-term impacts, and highlight the importance of applying new methods to optimize forecasts and future research

Article Details

How to Cite
Determination of heavy metal contamination in the surface sediments of the Antabamba River sub-basin in a medium-term period. (2024). C&T Riqchary Science and Technology Research Magazine, 6(2), 49-54. https://doi.org/10.57166/riqchary.v6.n2.2024.127
Section
Artículos
Author Biographies

Darío Sánchez-Castillo , Micaela Bastidas National University of Apurimac, Peru

Graduated from the Doctorate in Technology and Environment Sciences from the UNAP, Master in Mining and Environment. Degree: Metallurgical Engineering from UNSAAC. Professor attached to the Department of Engineering of UNAMBA, with experience in mining companies in state and private institutions.

Pablo Zuloaga-Candia , Micaela Bastidas National University of Apurimac, Peru

PhD in Educational Administration, Master's Degree in Educational Management. Degree: Mining Engineering from UNSAAC, with experience in mining and civil works.

Karina Gamarra-Peralta, Micaela Bastidas National University of Apurimac, Peru

Graduated from the Doctorate in Systems Engineering and Computer Science from UNMSM, M. Sc. of Computer Science with mention: in ICT management. Degree: Systems Engineering. Professor attached to the Department of Computer Engineering and Systems of UNAMBA. 

How to Cite

Determination of heavy metal contamination in the surface sediments of the Antabamba River sub-basin in a medium-term period. (2024). C&T Riqchary Science and Technology Research Magazine, 6(2), 49-54. https://doi.org/10.57166/riqchary.v6.n2.2024.127

References

M. Zhang, P. He, G. Qiao, J. Huang, X. Yuan, and Q. Li, “Heavy metal contamination assessment of surface sediments of the Subei Shoal, China: Spatial distribution, source apportionment and eco-logical risk,” Chemosphere, vol. 223, pp. 211–222, May 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.02.058

M. Huaranga et al., "Contaminación por metales pesados en la Cuenca del Río Moche, 1980 – 2010, La Libertad – Perú," 2010. doi: https://doi.org/10.17268/sci.agropecu.2012.03.05

L. Chávez and A. Flores, "Contaminación por metales pesados en sedimentos del río Antabamba, Apurímac," Revista Local de Cien-cias Ambientales de Apurímac, vol. 6, no. 1, pp. 25-40, 2022.

P. M. Bach, W. Rauch, P. S. Mikkelsen, D. T. McCarthy, and A. Delet-ic, “A critical review of integrated urban water modelling – Urban drainage and beyond,” Environmental Modelling & Software, vol. 54, pp. 88–107, Apr. 2014, doi:

https://doi.org/10.1016/j.envsoft.2013.12.018

M. E. Mohammad, N. Al-Ansari, and S. Knutsson, “Annual Runoff and Sediment in Duhok Reservoir Watershed Using SWAT and WEPP Models,” Engineering, vol. 08, no. 07, pp. 410–422, 2016, doi: https://doi.org/10.4236/eng.2016.87038

J. Feng and H. Yang, "Predicting heavy metal pollution in sediments using bagging techniques," Environmental Monitoring and As-sessment, vol. 195, no. 3, p. 576, 2023. doi: https://10.1007/s10661-023-10932-2.

M. Abrahan, J. A. Silva, and E. Lobo, "Assessment of heavy metals contamination in surface sediments using multivariate statistical techniques and artificial neural networks," Environmental Monitor-ing and Assessment, vol. 188, no. 3, p. 144, 2016. doi: https://10.1007/s10661-015-5165-8.

H. Ávila, E. Quintero, and N. Angulo, "Determinación de metales pesados en sedimentos superficiales costeros del sistema lago de Maracaibo, Venezuela," Multiciencias, vol. 14, no. 1, pp. 16-21, 2014. https://www.redalyc.org/articulo.oa?id=90430816005

R. Abarca and A. Vargas, "Contaminación por metales pesados en la región de Apurímac: Un análisis de la calidad del suelo," Revista de Ciencias Ambientales, vol. 45, no. 2, pp. 123-135, 2021.

Ministerio del Ambiente, "Informe sobre el estado de los suelos en Perú," Lima. Gobierno del Perú, 2020. https://site.minam.gob.pe

Oefa, "Oficina de Evaluación y Fiscalización Ambiental," 2022. [Online]. Available: https://www.gob.pe/oefa.

L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001. Doi: https://doi.org/10.1023/A:1010933404324

Vu Huy, "A Machine Learning Assessment to Predict the Sediment Transport Rate Under Oscillating Sheet Flow Conditions," Universi-ty of New Orleans, 12-2019. https://scholarworks.uno.edu/cgi/viewcontent.cgi?article=1134&context=honors_theses

[SIAR, "Sistema de Información Ambiental Regional," [Online]. Available: http://siar.regionsanmartin.gob.pe/

M. González Mares, “Hernández-Sampieri, R. & Mendoza, C (2018). Metodología de la investigación. Las rutas cuantitativa, cua-litativa y mixta,” Revista Universitaria Digital de Ciencias Sociales (RUDICS), vol. 10, no. 18, pp. 92–95, Jan. 2019, doi: https://10.22201/fesc.20072236e.2019.10.18.6.

M. R. Khan et al., "Ensemble learning methods for predicting heavy metal contamination in river sediments," Environmental Monitor-ing and Assessment, vol. 196, no. 2, p. 99, 2024. doi: https://doi.org/10.22201/fesc.20072236e.2019.10.18.6

Y. Wang et al., "Extreme Learning Machine for predicting sediment contamination by heavy metals," Ecotoxicology and Environmental Safety, vol. 238, p. 113550, 2024. doi: https://10.1016/j.ecoenv.2023.113550.

P. Zhang et al., "Fuzzy logic and machine learning integration for predicting heavy metal levels in sediment," Journal of Cleaner Pro-duction, vol. 405, p. 135450, 2023. doi: https://10.1016/j.jclepro.2023.135450.