Convolutional Neural Network Model to detect diseases in the leaves of Quinoa (Chenopodium quinoa) crop at the Centro Agronómico K'ayra, San Jeronimo, Cusco 2023
Main Article Content
Abstract
In the world, crop diseases are the main cause of reduction in production quality. These diseases affect quinoa crops and a large amount of economic losses occur each year. It is essential to identify these diseases at an early stage to increase production. A visual inspection is the most common method to identify diseases, these errors are common through visual inspection. Time is a key factor in disease detection and requires experience. This study shows how image recognition can be used for disease detection. This work consisted of collecting a data set of images for leaf spot 1,120 images, for bacterial spot 850 images, for downy mildew 896 images and 1,090 healthy images for a total of 3,956 images of quinoa leaves from the K'ayra agronomic center in the Leticia sector, San Jeronimo, Cusco, Peru, of which 70% were considered for training, 20% for validation and 10% for testing. The proposed model worked correctly with an accuracy of 89.498%, which will allow quinoa farmers to detect diseases early, hopefully leading to an increase in quinoa production worldwide.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When an author creates an article and publishes it in a journal, the copyright passes to the journal as part of the publishing agreement. Therefore, the journal becomes the owner of the rights to reproduce, distribute and sell the article. The author retains some rights, such as the right to be recognized as the creator of the article and the right to use the article for his or her own scholarly or research purposes, unless otherwise agreed in the publication agreement.
How to Cite
References
H. Duan, T. R. Miller, G. Liu, and V. W. Y. Tam, “Con-struction debris becomes growing concern of growing cities,” Waste Manag., vol. 83, pp. 1–5, Jan. 2019, https://doi.org/10.1016/j.wasman.2018.10.044 DOI: https://doi.org/10.1016/j.wasman.2018.10.044
M. Bravo, M., Reyna R., J., Gómez Sánchez, l., & Hua-paya H., “ESTUDIO QUÍMICO Y NUTRICIONAL DE GRANOS ANDINOS GERMINADOS DE QUINUA ( CHENOPODIUM QUINOA) Y KIWICHA (AMA-RANTUS CAUDATUS).” p. 16, 2013. [Online]. Avail-able: https://revistasinvestigacion.unmsm.edu.pe/index.php/quim/article/view/6558
“INIAP -Estación Experimental Santa Catalina,” 16-18, p. 8, 1985, [Online]. Available: http://181.112.143.123/bitstream/41000/2827/1/iniapsc322est.pdf
D. Solveig and T. Ames, “EL MILDIU (Peronospora farinosa) DE LA QUINUA (Chenopodium quinoa) en la zona andina. Manual práctico para el estudio de la enfermedad y del patógeno,” Cent. Int. la papa, p. 38, 2000, [Online]. Available: http://cipotato.org/wp-content/uploads/2014/10/AN60198.pdf
G. McAvoy, “Una solución para la Mancha foliar por Alternaria,” 2017. https://www.hortalizas.com/author/gmcavoy/
M. F. Yañez-Yazlle, N. Romano-Armada, M. M. Acre-che, V. B. Rajal, and V. P. Irazusta, “Halotolerant bac-teria isolated from extreme environments induce seed germination and growth of chia (Salvia hispanica L.) and quinoa (Chenopodium quinoa Willd.) under saline stress,” Ecotoxicol. Environ. Saf., vol. 218, p. 112273, Jul. 2021, https://doi.org/10.1016/j.ecoenv.2021.112273 DOI: https://doi.org/10.1016/j.ecoenv.2021.112273
Fairlie.A, La quinua en el perú. 2016. [Online]. Availa-ble: http://repositorio.pucp.edu.pe/index/bitstream/handle/123456789/54092/Nro_6_Fairlie_quinua_Perú.pdf?sequence=1&isAllowed=y
M. de D. A. y Riego, “El Perú se consolida como el primer productor y exportador mundial de quinua,” 2021. https://www.gob.pe/institucion/midagri/noticias/324394-el-peru-se-consolida-como-el-primer-productor-y-exportador-mundial-de-quinua
E. Efraín and J. Lepe, “CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS SUPERIORES DEL IPN A beginner ’ s tutorial for CNN,” pp. 1–35, 2017.
R. Ding et al., “Improved ResNet Based Apple Leaf Diseases Identification,” IFAC-PapersOnLine, vol. 55, no. 32, pp. 78–82, 2022, https://doi.org/10.1016/j.ifacol.2022.11.118 DOI: https://doi.org/10.1016/j.ifacol.2022.11.118
S. R. G. Reddy, G. P. S. Varma, and R. L. Davuluri, “Resnet-based modified red deer optimization with DLCNN classifier for plant disease identification and classification,” Comput. Electr. Eng., vol. 105, no. November 2022, p. 108492, 2023, https://doi.org/10.1016/j.compeleceng.2022.108492 DOI: https://doi.org/10.1016/j.compeleceng.2022.108492
G. Wang, Y. Sun, and J. Wang, “Automatic Image-Based Plant Disease Severity Estimation Using Deep Learning,” Comput. In-tell. Neurosci., vol. 2017, 2017, doi: 10.1155/2017/2917536. DOI: https://doi.org/10.1155/2017/2917536
J. Amara, B. Bouaziz, and A. Algergawy, “A deep learning-based approach for banana leaf diseases classification,” Lect. Notes Informatics (LNI), Proc. - Ser. Gesellschaft fur Inform., vol. 266, pp. 79–88, 2017.
R. E. Castañeda Valdivieso, J. R. Guerrero Meza, B. E. Renteros Parra, and J. A. Villanueva Mejía, “Detección de nutrientes del suelo y planta, y pestes en campos de cultivo de banano orgáni-co con Machine Learning,” Pirhua, 2021, [Online]. Available: https://hdl.handle.net/11042/5204
M. A. B. Bhuiyan, H. M. Abdullah, S. E. Arman, S. Saminur Rahman, and K. Al Mahmud, “BananaSqueezeNet: A very fast, lightweight convolutional neural network for the diagnosis of three prominent banana leaf diseases,” Smart Agric. Technol., vol. 4, no. February, p. 100214, 2023, https://doi.org/10.1016/j.atech.2023.100214 DOI: https://doi.org/10.1016/j.atech.2023.100214
L. Yang et al., “GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases,” Com-put. Electron. Agric., vol. 204, p. 107543, Jan. 2023, https://doi.org/10.1016/j.compag.2022.107543 DOI: https://doi.org/10.1016/j.compag.2022.107543
A. Setiawan, N. Yudistira, and R. C. Wihandika, “Large scale pest classification using efficient Convolutional Neural Net-work with augmentation and regularizers,” Comput. Electron. Agric., vol. 200, p. 107204, Sep. 2022, doi: 10.1016/J.COMPAG.2022.107204. DOI: https://doi.org/10.1016/j.compag.2022.107204
F. D. E. I. Y. Arquitectura, “Shiane Lizceth Farfan Vergara,” 2021.
David Beazley and B. K. Jones, Python Cookbook: 3rd Edition. 2013.
F. Coban, “The Role of the Media in International Relations: From the CNN Effect to the Al –Jazeere Effect,” J. Int. Relations Foreign Policy, vol. 4, no. 2, pp. 45–61, 2016, https://doi.org/10.15640/jirfp.v4n2a3. DOI: https://doi.org/10.15640/jirfp.v4n2a3