Heavy metals in agricultural soils of the Llallimayo sub-basin, department of Puno
Main Article Content
Abstract
Contamination of aquatic environments by heavy metals is one of the major concerns in rural localities and urban cities, for this reason during the months of July and November 2020, parameters were evaluated and samples were taken upstream and downstream of the Chacapalca river, analyzing physicochemical parameters: such as hydrogen potential (pH), temperature (°C), electrical conductivity (EC); heavy metals: aluminum (Al), arsenic (As), cadmium (Cd), total chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), mercury (Hg), lead (Pb), zinc (Zn); total coliforms and thermotolerant coliforms. The objective was to evaluate water quality in the Llallimayo River sub-basin and identify the pollutant factors correlated with the water ECAs of D.S. N° 004-2017-MINAM. The inorganic parameters indicate that high values of pH (9.7) and EC (2674) exceed the ECA values; likewise, the inorganic parameters show that the elements Al, As, Cd, Cu, Mn, Hg and Pb, are not suitable for vegetable irrigation, animal drinking and aquatic environment quality. In conclusion, the discharge of mining effluent seriously contaminates and exceeds the permissible limits for Al, As, Cu, Fe, Mn and Zn in water for human use and consumption.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When an author creates an article and publishes it in a journal, the copyright passes to the journal as part of the publishing agreement. Therefore, the journal becomes the owner of the rights to reproduce, distribute and sell the article. The author retains some rights, such as the right to be recognized as the creator of the article and the right to use the article for his or her own scholarly or research purposes, unless otherwise agreed in the publication agreement.
How to Cite
References
Alahabadi, A., Malvandi, H., 2018, Contamination and ecological risk assessment of heavy metals and metalloids in surface sediments of the Tajan River, Iran, Mar. Pollut. Bull, 133, 741–749. https://doi.org/10.1016/j.marpolbul.2018.06.030
Mohammad, M., Lokman, M., Islam, S. Rahman, Z., (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh, Environ. Nanotech, Monit. Manag., 5, 27–35. https://doi.org/10.1016/j.enmm.2016.01.002
Saiful, I., Belal, H., Matin, A. Shafiqul, S., I., (2018). Assessment of heavy metal pollution, distribution and source apportionment in the sediment from Feni River estuary, Bangladesh, Chemosp., 202, 25–32. https://doi.org/10.1016/j.chemosphere.2018.03.077
Kang, M., Tian, Y., Peng, S., Wang, M. (2019). Effect of dis-solved oxygen and nutrient levels on heavy metal contents and fractions in river surface sediments, Sci. Total Environ., 648, 861–870. https://doi.org/10.1016/j.scitotenv.2018.08.201
Duodu, G. O., Goonetilleke, A., Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment, Environ. Po-llut., 219, 1077–1091, 2016. https://doi.org/10.1016/j.envpol.2016.09.008
Chen Y. (2018). Long-term and high-concentration heavy metal contamination strongly influences the microbiome and functional genes in Yellow River sediments, Sci. Total Envi-ron., 637, 1400–1412. https://doi.org/10.1016/j.scitotenv.2018.05.109
Cobb, G., Sands, K., Waters, M., Wixson, M., y Dorward, K. E. (2000). Accumulation of heavy metals by vegetables grown in mine wastes. Environ. Toxicol. Chem, 19:600-607. Doi:10.1002/etc.5620190311. https://doi.org/10.1002/etc.5620190311
Negroni, M. (2009). Microbiología Estomatológica. Fundamentos y guía práctica (Segunda ed.) México: Editorial Medica Pan-americana.
Rascio, N. y Navari I.F. (2011). Heavy metal hyperaccumu-lating plants: How an why do they do it? And what makes them so interesting? Plant Sci. 180:169-181. Doi10.1016/j.plantsci.2010.08.16. https://doi.org/10.1016/j.plantsci.2010.08.016
Tchounwou, P. B. Yedjou, C. G., Patlolla A. K. y Sutton D. J. (2012). Heavy metal toxicity and the environmental toxicology. 3: 133-164. doi:10.1007/978-3-7643-8340-4_6. https://doi.org/10.1007/978-3-7643-8340-4_6
Wang, X; Chen J; Yan X; Zhang J; Huang J; Zhao J. (2015). Heavy metal chemical extraction from industrial and municipal mixed sludge by ultrasound- assisted citric acid J. of Industrial and Engineering Chemistry. 27:368-372. doi: 10.1016/j.jiec.2015.01.016. https://doi.org/10.1016/j.jiec.2015.01.016
Bonanno G; Borg J.A.; Di Martino V. (2017). Levels of heavy metals in wetland and marine vascular plants and their bio-monitiring potential: A comparative asseeement. Sc. of the Total Env. 576:796-806. doi: 10.1016/j.scitotenv.2016.10.171. https://doi.org/10.1016/j.scitotenv.2016.10.171
Chata (2015). Presencia de metales pesados (Hg, As, Pb, Cd) en agua y leche en la cuenca del rio Coata. Puno. Universidad Nacional del Altiplano Puno.
Chiang (1989). Niveles de los metales pesados en organismos, agua y sedimentos marinos recolectados en la V Región de Chile. Memorias del Simposio Internacional sobre los recursos vi-vos, Santiago.
Rodríguez, D., Córdova, V., Pérez, O. (2015). Educación Ambiental Vs. Baja Percepción Acerca De La Contaminación Por Metales Pesados En Comunidades Costeras. Environ. Educ. Versus Low Percept. Coast. Communities Heavy Met. Con-tam., 1, 13–28.
José-Bracho, G., Cuador-Gil, J. Q. Rodríguez-Fernández, R. M. (2016). Calidad del agua y sedimento en el lago de Maracaibo, estado Zulia, Minería y Geol., 32(1)
Laino Guanes, R.M. (2015). Concentración de metales en agua y sedimentos de la cuenca alta del río Grijalva, frontera, 6(1), 61-74.
Moronta-Riera, J. L., Riverón-Zaldivar A.B. (2016). Evalua-ción de la calidad físico-química de las aguas y sedimentos en la costa oriental del lago de Maracaibo., Minería Geol., 32(2), 102–111.
Quintero Rendón, L.A., Agudelo, E.A., Quintana Hernán-dez, Y.A., Cardona Gallo, S.A., Osorio Arias, A.F. (2010). Determinación de indicadores para la calidad de agua, se-dimentos y suelos, marinos y costeros en puertos colombia-nos, Gestión y Ambiente., 13(3), 51–64.
J. Mesa, E. Mateos-Naranjo, M.A. Caviedes, S. Redondo-Gomez, E. Pajuelo, I.D. Rodriguez-Llorente (2015). Scouting contaminated estuaries: heavy metal resistant and plant growth-promoting rhizobacteria in the native metal rhizoaccumula-tor Spartina maritima. Mar. Pollut. Bull., pp. 150-159 https://doi.org/10.1016/j.marpolbul.2014.11.002
Chopra, A.K., Sharma, M.K., Chamoli, S. (2011). Bioaccumulation of organochlorine pesticides in aquatic system-an overview, Environ. Monit. Assess., 173
Pandey, M., Pandey, A.K., Mishra, A., Tripathi, B.D. (2014). Assessment of metal bioaccumulation in Clarias batrachus and exposure evaluation in human, Proc. Int. Acad. Ecol. Envi-ron. Sci., 4(4), 176–184.
Sarah, R., Tabassum, B., Idrees, N., Hashem, A., Fathi, E. (2019). Bioaccumulation of heavy metals in Channa punctatus (Bloch) in river Ramganga (U.P.), India, Saudi J. Biol. Sci., 15(20), 1-6. https://doi.org/10.1016/j.sjbs.2019.02.009
Zhang, Z., Wan, H., Ding, M., Wang, P., Xu, X., Jiang, Y. (2018). Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China, Ecotoxicol. Environ. Saf., 165(99) 314-324. https://doi.org/10.1016/j.ecoenv.2018.09.010
Ansah, K.E.E., Nkrumah, D., Nti, S.O., Opoku, F. (2019). Adsorption of heavy metals (Cu, Mn, Fe and Ni) from surface water using Oreochromis niloticus scales., Pollution, 5(1), 115–122.
Mora, A.M. Jumbo Flores, D., González Merizalde, M., Ber-meo