Determination of the best Machine Learning model for the prediction of the California Bearing Ratio of soils in Abancay, 2024

Main Article Content

Flor de Cantuta Tello-Sarmiento
Manuel J. Ibarra-Cabrera

Abstract

 The California Bearing Ratio (CBR) is a fundamental index in geotechnical engineering to evaluate the bearing capacity of soils, especially in the design and construction of pavements and other structures on natural ground. However, the determination of this index is a costly and laborious task, for that reason in this study, the prediction of CBR using machine learning models is proposed. Three machine learning models were developed, deep neural networks (DNN), decision trees, and support vector machines. The work consisted of collecting 310 records with soil characteristics, of which 217 records were considered for training, 62 for validation and 31 for testing; the data were collected in 3 soil laboratories in the city of Abancay, province of Abancay in the Apurimac region of Peru, where the following physical soil characteristics were obtained: gravel percentage, percentage of fines, optimum moisture content (OCH), liquid limit, plastic limit, plasticity index and maximum dry density (MDS) and for the characteristic to be predicted the CBR value at 100%. The models were evaluated with the coefficient of determination (R²), the mean absolute error (MAE), the mean square error (MSE), and the root mean square error (RMSE). The results show that the decision tree algorithm or model is the most efficient for predicting the CBR at 100% because it has the best coefficient of determination R² = 0.9307 and also the lowest values for the MSE = 9.199, MAE = 1.216 and RMSE = 3.033; these values are the best in relation to those found for the deep neural network and support vector regression machine models.

Article Details

How to Cite
Determination of the best Machine Learning model for the prediction of the California Bearing Ratio of soils in Abancay, 2024. (2024). C&T Riqchary Science and Technology Research Magazine, 6(1), 44-51. https://doi.org/10.57166/riqchary.v6.n1.2024.121
Section
Artículos
Author Biographies

Flor de Cantuta Tello-Sarmiento, Escuela Profesional de Ingenieria Informática y Sistemas de la Universidad Nacional Micaela Bastidas de Apurímac-Perú

Flor de Cantuta Tello Sarmiento, bachelor's degree in Computer and Systems Engineering from the Micaela Bastidas National University of Apurimac, is currently a software engineer at the company Rappi S.A.C.

Manuel J. Ibarra-Cabrera , Professional School of Computer and Systems Engineering of the Micaela Bastidas National University of Apurimac-Peru

Manuel Jesús Ibarra Cabrera, PhD in computer science and researcher in the areas of software engineering, serious game, educational computing, mobile computing, IoT and industry and society. University professor of undergraduate and postgraduate courses at the Universidad Nacional Micae-la Bastidas de Apurimac, Universidad Tecnológica de los Andes, Universidad Nacional del Altiplano and the Universidad Nacional Mayor de San Marcos. Currently, he is an active member of important conferences in Latin America: LACLO, CLEI, CONTIE, HCI, SABTIC, CISTI, Decisio-ning and others.

How to Cite

Determination of the best Machine Learning model for the prediction of the California Bearing Ratio of soils in Abancay, 2024. (2024). C&T Riqchary Science and Technology Research Magazine, 6(1), 44-51. https://doi.org/10.57166/riqchary.v6.n1.2024.121

References

J. R. Lópe, "Herramientas digitales y uso de inteligencia artificial en geotecnia: Un enfoque en la evaluación de taludes con Matlab," no. 29 de enero de 2024, 2024.

https://doi.org/10.56712/latam.v5i1.1640

D. K. Talukdar, "A Study of Correlation Between California Bearing Ratio (CBR) Value With Other Properties of Soil," vol. 4, India, 2014.

J. V.-L. J. E. A.-B. K. F.-F. C. L. C.-E. K. M. M.-A. E. N. L.-M. M. T. &. D. D. PERRET, Desarrollo de métodos de análisis de espectroscopia y algoritmos de aprendizaje automático para la evaluación de algunas propiedades del suelo en Costa Rica. Agronomía Costarricense, Universidad de Costa Rica. Colegio de Ingenieros y Agrónomos. Ministerio de Agricultura y Ganadería, 2022.

D. L. COBA, M. HERRERA SUAREZ, M. M. GARCIA LORENZO and R. y BELTRAN, Modelo computacional para la estimación de la densidad del suelo a través del sensoramiento continuo. Revista Ciencia y Técnica Agrícola, vol. 27, 2018.

V. C. LOME, "Análisis fotogramétrico de nube de puntos y aprendizaje automático como herramientas útiles en la caracterización de macizos rocosos," Puebla, Benemérita Universidad Autónoma de Puebla, 2023.

M. J. CCASANI and Y. I. FERRO, "Evaluación y análisis de pavimentos en la ciudad de Abancay, para proponer una mejor alternativa estructural en el diseño de pavimentos," Abancay, Universidad Tecnológica de los Andes, 2017.

M.T.C, "MANUAL DE CARRETERAS: DISEÑO GEOMÉTRICO DG – 2018," 2018.

M.T.C, "MANUAL DE ENSAYO DE MATERIALES," Lima, Ministerio de Transportes y Comunicaciones, 2016.

H. O. BECERRA, "ANÁLISIS Y ESTUDIOS DE SUELOS Y SU APLICACIÓN PARA EL MEJORAMIENTO DEL TRAMO 19 DE UNA CARRETERA EN LA PROVINCIA DE CORONEL PORTILLO UCAYALI 2018," Lima, 2020.

J. W. Tukey, Exploratory Data Analysis, Massachusetts: Addison-Wesley, 1977.

G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, Springer, 2013. https://doi.org/10.1007/978-1-4614-7138-7

J. E. V.-L. K. A.-B. Johan Perret, Desarrollo de métodos de análisis de espectroscopia y algoritmos de aprendizaje automático para la evaluación de algunas propiedades del suelo en Costa Rica, 2019.

F. J. Valderrama, H. I. Mejía, S. P. Muñoz Pérez and V. Tuesta, "“Desarrollo de un modelo predictivo de las propiedades mecánicas del suelo usando redes neuronales artificiales," 2021.

A. R. Paucar and S. Esteban, "Parámetros de resistencia al corte del suelo en función a sus propiedades físicas, empleando redes bayesianas y ensayo triaxial-Callqui Grande," 2023.

M. M. O. R. Boza Capani, PARÁMETROS DE RESISTENCIA AL CORTE DE SUELOS A PARTIR DE SUS PROPIEDADES FÍSICAS, UTILIZANDO REDES NEURONALES ARTIFICIALES Y EQUIPO TRIAXIAL, UNH, 2018.

K. TERZAGHI, R. B. PECK and G. MESRI, Soil mechanics in engineering practice., John wiley & sons, 1996.