Determination of the best Machine Learning model for the prediction of the California Bearing Ratio of soils in Abancay, 2024
Main Article Content
Abstract
The California Bearing Ratio (CBR) is a fundamental index in geotechnical engineering to evaluate the bearing capacity of soils, especially in the design and construction of pavements and other structures on natural ground. However, the determination of this index is a costly and laborious task, for that reason in this study, the prediction of CBR using machine learning models is proposed. Three machine learning models were developed, deep neural networks (DNN), decision trees, and support vector machines. The work consisted of collecting 310 records with soil characteristics, of which 217 records were considered for training, 62 for validation and 31 for testing; the data were collected in 3 soil laboratories in the city of Abancay, province of Abancay in the Apurimac region of Peru, where the following physical soil characteristics were obtained: gravel percentage, percentage of fines, optimum moisture content (OCH), liquid limit, plastic limit, plasticity index and maximum dry density (MDS) and for the characteristic to be predicted the CBR value at 100%. The models were evaluated with the coefficient of determination (R²), the mean absolute error (MAE), the mean square error (MSE), and the root mean square error (RMSE). The results show that the decision tree algorithm or model is the most efficient for predicting the CBR at 100% because it has the best coefficient of determination R² = 0.9307 and also the lowest values for the MSE = 9.199, MAE = 1.216 and RMSE = 3.033; these values are the best in relation to those found for the deep neural network and support vector regression machine models.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
When an author creates an article and publishes it in a journal, the copyright passes to the journal as part of the publishing agreement. Therefore, the journal becomes the owner of the rights to reproduce, distribute and sell the article. The author retains some rights, such as the right to be recognized as the creator of the article and the right to use the article for his or her own scholarly or research purposes, unless otherwise agreed in the publication agreement.
How to Cite
References
J. R. Lópe, "Herramientas digitales y uso de inteligencia artificial en geotecnia: Un enfoque en la evaluación de taludes con Matlab," no. 29 de enero de 2024, 2024.
https://doi.org/10.56712/latam.v5i1.1640
D. K. Talukdar, "A Study of Correlation Between California Bearing Ratio (CBR) Value With Other Properties of Soil," vol. 4, India, 2014.
J. V.-L. J. E. A.-B. K. F.-F. C. L. C.-E. K. M. M.-A. E. N. L.-M. M. T. &. D. D. PERRET, Desarrollo de métodos de análisis de espectroscopia y algoritmos de aprendizaje automático para la evaluación de algunas propiedades del suelo en Costa Rica. Agronomía Costarricense, Universidad de Costa Rica. Colegio de Ingenieros y Agrónomos. Ministerio de Agricultura y Ganadería, 2022.
D. L. COBA, M. HERRERA SUAREZ, M. M. GARCIA LORENZO and R. y BELTRAN, Modelo computacional para la estimación de la densidad del suelo a través del sensoramiento continuo. Revista Ciencia y Técnica Agrícola, vol. 27, 2018.
V. C. LOME, "Análisis fotogramétrico de nube de puntos y aprendizaje automático como herramientas útiles en la caracterización de macizos rocosos," Puebla, Benemérita Universidad Autónoma de Puebla, 2023.
M. J. CCASANI and Y. I. FERRO, "Evaluación y análisis de pavimentos en la ciudad de Abancay, para proponer una mejor alternativa estructural en el diseño de pavimentos," Abancay, Universidad Tecnológica de los Andes, 2017.
M.T.C, "MANUAL DE CARRETERAS: DISEÑO GEOMÉTRICO DG – 2018," 2018.
M.T.C, "MANUAL DE ENSAYO DE MATERIALES," Lima, Ministerio de Transportes y Comunicaciones, 2016.
H. O. BECERRA, "ANÁLISIS Y ESTUDIOS DE SUELOS Y SU APLICACIÓN PARA EL MEJORAMIENTO DEL TRAMO 19 DE UNA CARRETERA EN LA PROVINCIA DE CORONEL PORTILLO UCAYALI 2018," Lima, 2020.
J. W. Tukey, Exploratory Data Analysis, Massachusetts: Addison-Wesley, 1977.
G. James, D. Witten, T. Hastie and R. Tibshirani, An Introduction to Statistical Learning, Springer, 2013. https://doi.org/10.1007/978-1-4614-7138-7
J. E. V.-L. K. A.-B. Johan Perret, Desarrollo de métodos de análisis de espectroscopia y algoritmos de aprendizaje automático para la evaluación de algunas propiedades del suelo en Costa Rica, 2019.
F. J. Valderrama, H. I. Mejía, S. P. Muñoz Pérez and V. Tuesta, "“Desarrollo de un modelo predictivo de las propiedades mecánicas del suelo usando redes neuronales artificiales," 2021.
A. R. Paucar and S. Esteban, "Parámetros de resistencia al corte del suelo en función a sus propiedades físicas, empleando redes bayesianas y ensayo triaxial-Callqui Grande," 2023.
M. M. O. R. Boza Capani, PARÁMETROS DE RESISTENCIA AL CORTE DE SUELOS A PARTIR DE SUS PROPIEDADES FÍSICAS, UTILIZANDO REDES NEURONALES ARTIFICIALES Y EQUIPO TRIAXIAL, UNH, 2018.
K. TERZAGHI, R. B. PECK and G. MESRI, Soil mechanics in engineering practice., John wiley & sons, 1996.