Revista Micaela

Paralelizacion del algoritmo a priori para la busqueda de elementos
frecuentes

Parallelization of the Apriori Algorithm for the Search of Frequent
Elements
Yonatan Mamani-Coaquira' https://orcid.org/0000-0002-5919-2145 y
Edith K. Chumpisuca Carrion?

! Universidad Nacional Micaela Bastidas de Apurimac, ymamanic@gmail.com, Abancay, Perti

2 Universidad Nacional Micaela Bastidas de Apurimac, chumpisucakarina@gmail.com, Abancay, Perti

Resumen

Existe una amplia variedad de técnicas que mejoran el rendimiento de las aplicaciones al solucionar uno o mas de
los problemas mas importantes de los procesadores actuales. En este trabajo, se muestran el tiempo de ejecucion,
la aceleracion y la eficiencia del algoritmo lineal Apriori, asi como su paralelismo con el uso de OpenMP. Al
identificar los elementos frecuentes de las bases de datos transaccionales, se observa que, al procesar 5 mil
registros, el tiempo del algoritmo con OpenMP mejora en 42,078 segundos en comparacion con el algoritmo
secuencial, en cuya ejecucion se utilizaron 8 nucleos de procesador.

Palabras clave: Algoritmo a priori, conjuntos de elementos frecuentes, algoritmo paralelo, openMP.
Abstract

There is a wide variety oftechniques that increase application performance by alleviating one or more of the most
important problems with today's processors. In this work, the execution time, speedup and efficiency of the linear
Apriori algorithm are shown as well as parallel with the use of OpenMP. By identifying the frequent elements of
transactional databases, in processing 5 thousand records the time improves in 42,078 seconds of the algorithm
with openMP compared to the sequential algorithm, in the execution 8 processor cores were used.

Keywords: Apriori algorithm, frequent itemsets, parallel algorithm, openMP.

1. Introduccion

La mineria de datos se ha convertido en un drea muy importante en las Ciencias de la Computacion, esta area
permite generar conocimiento a través de conjunto de datos proveniente de bases de datos estructurada o no
estructurada. Los grandes volimenes de informacion que son generadas por usuarios a nivel mundial sigue creciendo
y llega hacer de manera exponencial, publicando a diario millones de datos por medio de redes sociales, blog, aulas
virtuales, sistemas de informacion empresariales donde incluyen texto, imagenes, videos, musicas, etc., para realizar
la seleccion informacion valiosa requiere de sistemas que procesen de manera automatica. En diferentes trabajos se
proponen algoritmos para resolver esta tarea como: Apriori, Eclat, Relim y FP-Growth. Sin embargo atn existe el
problema de la bisqueda de elementos frecuentas en conjunto de datos masivos y aun existe la necesidad de
optimizar la eficiencia y la escalabilidad de datos, por estas razones varias investigaciones han propuesto métodos
paralelos para brindar solucion a estos problemas, sin embargo; aiin contintian las propuestas de algoritmos paralelos
para optimizar las necesidades descritas.

Los algoritmos mas conocidos para mineria de reglas de asociacion a partir de una base de datos son: Apriori [1],
Relim [2], Eclat [3], FP-Growth [4] y FIN [5]. Por lo expuesto anteriormente ain existe la necesidad de aplicar
algoritmos paralelos para optimizar los tiempos de ejecucion. En el presente trabajo se implementd el algoritmo
Apriori basado en la tecnologia de paralelizacion de OpenMP que permite reducir el tiempo de espera en el
procesamiento de los datos para encontrar elementos frecuentes en conjunto de datos masivos.

2. Concepcion Tedrica

Esta investigacion fue de tipo aplicada y el disefio fue cuasiexperimental, que consiste en un solo grupo, este
trabajo presenta los siguientes puntos. El disefio de diagrama fue de la siguiente manera:

2.1 Algoritmo Apriori

La idea principal del algoritmo Apriori es encontrar conjuntos de elementos frecuentes y que tenga mayor
frecuencia en conjunto de datos masivos. Segin Agrawal [1] enuncio como propiedad esencial para el algoritmo
Apriori lo siguiente: logra afirmar que el subconjunto de un conjunto de elementos frecuentes también serd un
conjunto de elementos frecuentes. Por tal motivo; con este algoritmo se obtiene como primer paso los conjuntos de

ISSN: 2709-8990 - ISSN de enlace (ISSN-L): OPEN/”~| ACCESS
2709-8990 ISNT: [26] j
http://www.isni.org/ISNI0000000404 188151

http://www.isni.org/ISNI0000000404188151
https://orcid.org/0000-0002-5919-2145

items o elementos frecuentes de dimension 1, luego los de dimension 2, asi sucesivamente hasta que no se encuentren
mas conjuntos.

El proceso para encontrar elementos frecuentes mediante el algoritmo Apriori es el siguiente [6]:
a) Paso 1: Establecer el soporte minimo y la confianza de acuerdo con la definicion del usuario.

b) Paso 2: Construye el candidato 1-itemsets. Y entonces generar los conjuntos frecuentes 1-itemsets mediante
la poda de algunos 1-itemssets conjuntos de elementos si sus valores de soporte son inferiores a soporte
minimo.

c) Paso 3: Unir los conjuntos de 1-itemsets frecuentes entre si para construir candidatos de conjuntos 2-itemsets
y pasar algunos conjuntos de elementos poco frecuentes de los 2 conjuntos de elementos candidatos a crear
los 2-itemsets frecuentes.

d) Paso 4: Repita los pasos igualmente paso 3 hasta que no haya mas se pueden crear conjuntos de elementos
candidatos.

La Fig. | muestra el algoritmo Apriori que fue propuesto por Agrawal [1], este algoritmo permite encontrar elementos
frecuentes en un conjunto de datos.

: Input: T //conjunto de transacciones

1

2: Output: L /lista de patrones encontrados en los datos

2 Leo

4 for allteT do

5 for s =110 s <= |t| do

6: C & {VP:P ¢ {ij,...,in} AP CtA|P| « s}

/I candidate item-sets int t
VP ¢ C, then support(P)«1
if CN L # ¢ then

L

9: VPeL : PeC, then support(P)++

10: end if

1: L« Lu{C\ L} // include new patterns in L
12: end for

13: end for

14: return L

Fig. 1.Algoritmo Apriori Secuencial

La Fig. 2 es la representacion de los pasos mencionados anteriormente para encontrar los elementos frecuentes, esta
figura esta representado mediante tablas. TID viene hacer los identificadores; 11, 12,... son los elementos o items y
Items-count es la cantidad de veces que aparece uno o varios elementos.

IO | Ust of items
1 1205
i an R Lo 3o
Rl 11204 2 3
R - —>r—
L) " 2 £
) A2.13, 5 3
£l [INEXE) 6 3
10 11.12.15,16
(8) Original Database (b)Candidate 1 (c) Large 1-Items
Mems | Mems Count
| T rems | tems Count
u (v s 3 Urge Hems
55 =k WaB| 1| — 128
OL oY eas| 1 Tnes
e W
s 1
(@) Candaate 2 (0) e 2-mems (f)Canddate3 g ge 3remd
Fig. 2. Encontrar elementos frecuentes paso a paso
2.2, Paralelizacion con OpenMP

OpenMP (Open Multi-Processing) es un API (Application Programming Interface) para programacion
paralela de memoria compartida. Los MP en OpenMP significan multiprocesamiento. Este API esta disefiado para
sistemas en los que cada hilo o proceso puede potencialmente tener acceso a toda la memoria disponible, cuando se
programa con OpenMP se puede ver que el sistema como coleccion de nucleos o CPUs, todas las cuales tienen acceso
a la memoria principal [7] como se muestra en la Fig. 3

ISSN: 2709-8990 - ISSN de enlace (ISSN-L): OPEN ACCESS
2709-8990 ISNT: [27]
http://www.isni.org/ISNI0000000404188151

http://www.isni.org/ISNI0000000404188151

Revista Micaela

CPU CPU CPU CPU

Fig. 3. Sistema de memoria compartida
A continuacion, se menciona algunas caracteristicas para la implementacion del algoritmo mediante OpenMP:
e Utilizacion de directivas o palabras reservadas del compilador (#pragma)
e Crear, sincroniza y destruye hilos
e Incorpora funciones especificas
e Paralelismo de memoria compartida
e Dentro de un paralelismo puede incorporar otro paralelismo
3. Trabajos Relacionados

Segun [1] en su trabajo de investigacion "FastAlgorithms for Mining Association Rules" enuncio como
propiedad esencial para el algoritmo Apriori lo siguiente: se puede afirmar que el subconjunto de un conjunto de
elementos frecuentes también sera un conjunto de elementos frecuentes. Por tal motivo con este algoritmo se obtiene
como primer paso los conjuntos de items o elementos frecuentes de dimension 1, luego los de dimension 2, asi
sucesivamente hasta que no se encuentren mas conjuntos. Ventaja: algoritmo basico en mineria de patrén frecuente,
adecuado para base de datos densa. Desventaja: el espacio y la complejidad del tiempo son alto.

Varios trabajos [1], [8], [9], [10], [11] han sido presentados como mejora del algoritmo Apriori, las propuestas
mencionadas utilizan paralelizacion para mejorar el tiempo de respuesta. Sin embargo después del algoritmo Apriori,
surgieron otras técnicas algoritmicas que también realizan la identificacion de elementos frecuentes en base de datos
transacciones, pero con mayor rendimiento en el tiempo de ejecucién como son:

Eclat, segin [3] en su trabajo denominado "Scalable Algorithms for Association Mining", el descubrimiento de reglas
de asociacion ha surgido como un problema importante en el descubrimiento de conocimiento y la extraccion de datos.
La Asociacion La tarea de mineria consiste en identificar los conjuntos de elementos frecuentes y, a continuacion,
formar reglas de implicacion condicionales entre ellos. En este trabajo, se presente algoritmos eficientes para el
descubrimiento de conjuntos de elementos frecuentes que forman la fase de procesamiento intensivo de la tarea. FP-
Growth es el otro algoritmo, [12] la mayoria de los estudios anteriores adoptan un enfoque de generacion y prueba de
conjuntos de candidatos tipo Apriori. Sin embargo, la generacion de conjuntos de candidatos sigue siendo costosa,
especialmente cuando existe una gran cantidad de patrones and/or patrones largos. En este estudio, proponemos una
estructura novedosa de arbol de patrones frecuentes (FP-tree), que es una estructura extendida de prefijos de arbol
para almacenar informacion comprimida y crucial sobre patrones frecuentes, y desarrollamos una FP eficiente basada
en datos. Algoritmo YAFIM, segtn [13] en su trabajo de investigacion denominado "YAFIM: A parallel frequent
itemset mining algorithm with spark" realizd la propuesta de un nuevo algoritmo basado en Apriori este es el algoritmo
ampliamente utilizado para extraer conjuntos de elementos frecuentes de un conjunto de datos transaccional. Sin
embargo, el proceso FIM es tanto intensivo en datos como intensivo en computacion. La computacion paralela y
distribuida es una estrategia efectiva y principalmente utilizada para acelerar los algoritmos de conjuntos de datos a
gran escala. Sin embargo, los algoritmos de Apriori paralelos existentes implementados con el modelo MapReduce
no son lo suficientemente eficientes para el célculo iterativo.

Otro algoritmo propuesto fue D2P-Apriori [14] en este trabajo de investigacion denominado "D2P-Apriori: A deep
parallel frequent itemset mining algorithm with dynamic queue" se propuso Dynamic Queue y Deep Parallel Apriori
(D2P-Apriori), un algoritmo de mineria de elementos de paralelo frecuente en GPU para satisfacer el requisito de alto
rendimiento. Por otro lado [15] propone el algoritmo HP-Apriori en su trabajo denominado "Hp-Apriori: Horizontal
parallel-apriori algorithm for frequent itemset mining from big data", menciona que debido a la gran escala y la
complejidad de los datos masivos, la mineria de datos utilizando una sola computadora personal es un problema dificil.
Con el aumento en el tamafio de las bases de datos, los sistemas de computacion en paralelo pueden causar ventajas
considerables en las aplicaciones de mineria de datos mediante la explotacion de algoritmos de mineria de datos.

4. Experimentacion

Implementamos un conjunto de pruebas. Cada prueba fue ejecutada con el algoritmo secuencial y paralelo con
OpenMP. Las caracteristicas de la computadora utilizada fueron: Asus S46C, procesador Intel Core i5-3317U
CPU@1.70GHZ (4 CPUs), Memoria Ram 6GB y el sistema operativo Ubuntu 64 bits. Por otro lado; para la ejecucion de los

ISSN: 2709-8990 - ISSN de enlace (ISSN-L): PEN ACCE
2709-8990 ISNI: [28] o CCESS

http://www.isni.org/ISNI0000000404 188151

http://www.isni.org/ISNI0000000404188151

algoritmos se utilizo el lenguaje de programacion C++, donde para cada uno de los algoritmos se utiliz como datos de entrada
los siguientes: 500, 1000 y 5000 registros de transacciones. Por otra parte, para hallar el tiempo de ejecucion en segundos se
utiliz6 la funcion de "clock t". Para obtener los resultados de medicion de desempefio del algoritmo Apriori secuencial y
paralelo se utilizaron las siguientes métricas: el speedup y eficiencia, con 4 niicleos para cada conjunto de datos.

4.1 Evaluacion de tiempo

En la Tabla 1 se muestra el tiempo en segundos, fueron ejecutados los algoritmos secuencial y paralelo con openMP
mediante la técnica del algoritmo Apriori. Se puede ver en la Tabla 1 que mientras mas datos sean evaluados el tiempo es mas
corto de forma paralela con respecto al algoritmo secuencial.

Tabla 1. Tiempo de ejecucion en segundos por cada algoritmo

Algoritmo 0.5k 1k ok
Apriori secuencial 2.755 5.447 253.844
Apriori paralelo openMP | 2.24066 | 4.81778 | 211.466

4.2 Evaluacion de speedup y eficiencia

En la Tabla 2 se muestra el tiempo de ejecucion en segundos mediante el algoritmo Apriori procesados en 4 niicleos
del procesador, fueron ejecutados 0.5k, 1ky Sk registros con el algoritmo paralelo Apriori basado enopenMP.

Tabla 2. Tiempo de ejecucion en segundos del algoritmo Apriori paralelo

Datos 4 Nicleos
0.5k 2.24066
1k 4,81776
Sk 211.766

En la Tabla 3 se puede ver el Speedup evaluados en con 4 nicleos de un procesador. La Tabla 4 muestra como la eficiencia
aumenta al tiempo en que lo procesa el niimero de procesadores y el tamafio o dimension de los datos de entrada, los resultados
de las Tablas 3 y 4 fueron obtenidos mediante el algoritmo Apriori paralelo con OpenMP. Por otro lado; para hallar los valores
de speedup se utilizo la siguiente formula: SN=T1/TN, y para eficiencia: EN = SN/N. Dénde: SN es valor de speedup, T1
tiempo de ejecucion algoritmo serial, TN tiempo de ejecucion del algoritmo en paralelo, N es el numero de nucleos utilizados,
EN el valor de la eficiencia [16].

Tabla 3. Evaluacion de Speedup

Datos 4 Nucleos
0.5k 1.23
1k 1.131
5k 1.199

Tabla 4. Evaluacion Eficiencia

Datos 4 Nucleos
0.5k 0.308
1k 0.283
5k 0.3

5. Discusiones y resultados

Cuando se analiza los resultados obtenidos de los tiempos de ejecucion para un algoritmo paralelo, se debe considerar
no solamente el algoritmo, sino también el sistema operativo y las caracteristicas del ordenador en donde se ejecutaran los
datos de evaluacion. Esto va permitir variar los resultados de los tiempos de ejecucion para cada conjunto de datos porque
las caracteristicas del equipo pueden ser diferentes.

ISSN: 2709-8990 - ISSN de enlace (ISSN-L): OPEN~ ACCESS
2709-8990 ISNI: [29]

http://www.isni.org/ISN10000000404188151

http://www.isni.org/ISNI0000000404188151

Revista Micaela

De los experimentos realizados en la Tabla 1, el tiempo de ejecucion del algoritmo serial y paralelo tienen casi el mismo
valor esto implica que no hay mucha variacion con la ejecucion utilizando un solo nucleo. El que tiene menor tiempo de
ejecucion es el algoritmo en paralelo con el valor de 211.766 segundos para 5 mil transacciones. Por otro lado; como puede
verse el algoritmo paralelo tiene un Speedup 6ptimo, pues la ganancia de velocidad tiende a ser directamente proporcional
al nlimero de procesadores a medida que "n" aumenta.

La eficiencia mide el uso que se ejecuta en los procesadores. El experimento realizado en la Tabla 4 se aprecia que el
algoritmo paralelo Apriori al procesar con 4 nucleos el tiempo de ejecucion son casi similares con una cantidad de 0.5k, 1k
y 5k transacciones.

6. Conclusion

Segun los resultados obtenidos fue posible y favorable la implementacion del algoritmo Apriori de forma paralela
mediante OpenMP, esto permiti6 identificar el tiempo de ejecucion, speedup y eficiencia con varios registros de
transacciones de base de datos. Por otro lado; la experimentacion y evaluacion realizada muestra la siguiente informacion:
cuando se implementa algoritmos de forma paralela tiende a ser escalable y eficiente para resolver problemas de ejecucion
de grandes cantidades de datos.

Los resultados obtenidos en la Tabla 3 y 4 speedup y eficiencia respectivamente permitieron ver la eficiencia segun los
distintos valores de entrada. Es decir, dependiendo de los datos de entrada: el tiempo, speedup y eficiencia sera mucho mejor
con la utilizacion de openMP para algoritmos paralelos. También el tiempo en segundos influye mucho segun la cantidad
de transacciones que desea utilizar durante la experimentacion. En general, como se puede ver en los experimentos, el
algoritmo paralelo diseniado permite la solucion de un problema de tiempo para los algoritmos secuenciales. Por otro lado;
mencionar que es importante la eleccion del computador para procesar grandes cantidades de datos.

Referencias

[1] R.Agrawal and R. Srikant, "Mining sequential patterns,” Proc. Elev. Int. Conf. Data Eng., pp. 3-14, 1995.

[2] C. Borgelt, "Keeping Things Simple: Finding Frequent Item Sets by Recursive Elimination," in Proceedings
of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations,
2005, pp. 66-70.

[3] M.J. Zaki, "Scalable algorithms for association mining," IEEE Trans. Knowl. Data Eng., vol. 12, no.3, pp.
372-390, May 2000.

[4] J. Han, J. Pei, Y. Yin, and R. Mao, "Mining frequent patterns without candidate generation: A frequent-
pattern tree approach," Data Min. Knowl. Discov., vol. 8, no. 1, pp. 53-87, 2004.

[5] Z.-H. Deng and S.-L. Lv, "Fast mining frequent itemsets using Nodesets," Expert Syst. Appl., vol. 41, no.
10, pp. 4505-4512, 2014.

[6] N.Li, L. Zeng, Q. He, and Z. Shi, "Parallel Implementation of Apriori Algorithm Based on MapReduce," in
2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and
Parallel/Distributed Computing, 2012, pp. 236-241.

[7] P.Pacheco, An Introduction to Parallel Programming. 2011.

[8] R.Agrawal and J. C. Shafer, "Parallel mining of association rules," IEEE Trans. Knowl. Data Eng., vol. 8,
no. 6, pp. 962-969, Dec. 1996.

[9] Y. Wei, R. Yang, and P. Liu, "An improved Apriori algorithm for association rules of mining," in 2009 IEEE
International Symposium on IT in Medicine Education, 2009, vol. 1, pp. 942-946.

[10] X.-W. Liu and P.-L. He, "The research of improved association rules mining Apriori algorithm," in
Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat.
No.04EX826), 2004, vol. 3, pp. 1577-1579 vol.3.

[111 Y. Ye and C.-C. Chiang, "A Parallel Apriori Algorithm for Frequent Itemsets Mining," in Fourth
International Conference on Software Engineering Research, Management and Applications (SERA'06),
2006, pp. 87-94.

[12] J. Pei et al., "Mining sequential patterns by pattern-growth: the PrefixSpan approach," IEEE Trans. Knowl.
Data Eng., vol. 16, no. 11, pp. 1424—1440, Nov. 2004.

[13] H. Qiu, R. Gu, C. Yuan, and Y. Huang, "Y AFIM: A Parallel Frequent Itemset Mining Algorithm with Spark,"
in 2014 IEEE International Parallel Distributed Processing Symposium Workshops, 2014, pp. 1664-1671.

[14] Y. Wang, T. Xu, S. Xue, and Y. Shen, "D2P-Apriori: A deep parallel frequent itemset mining algorithm with
dynamic queue," 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI),

ISSN: 2709-8990 - ISSN de enlace (ISSN-L): OPEN ACCESS
2709-8990 ISNI: [30]
http://www.isni.org/ISNI0000000404188151

http://www.isni.org/ISNI0000000404188151

2018, pp. 649-654. in 2018 Tenth International Conference on Advanced Computational Intelligence
(ICACI), 2018, pp. 649-654.

[15] M. Nadimi-Shahraki and M. Mansouri, "Hp-Apriori: Horizontal parallel-apriori algorithm for frequent
itemset mining from big data," in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)(,
2017, pp. 286-290.

[16] S. Nesmachnow, "COMPUTACION DE ALTA PERFORMANCE," 2010. [Online]. Available:
https://www.fing.edu.uy/inco/cursos/hpc/material/clases/Tema4-2010.pdf. [Accessed: 30-Jul-2019].

2709-8990 ISNI: [31]
http://www.isni.org/ISNI0000000404188151

http://www.isni.org/ISNI0000000404188151

